For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
MT-Opt 和 Actionable Models 的基石是训练数据的数量和质量。为了大规模地收集多样化的多任务数据,用户需要一种方法来指定任务,决定为哪些任务收集数据,并在最后管理和平衡所产生的数据集。为此,我们创建了一个可扩展且直观的多任务成功检测器,并在其中使用了来自所有选定任务的数据。
通过使用监督学习进行训练,多任务成功检测器得以检测给定任务的结果,并且允许用户快速定义新任务及其奖励。在收集数据的过程中使用这个成功检测器时,系统会对它进行定期更新,以适应由各种现实世界因素引起的分布偏移,如变化的照明条件、变化的背景环境和机器人发现的新状态。
第二,我们通过使用低难度任务的解决方案来有效地引导学习更复杂的任务,同时为多个机器人收集多个不同任务的数据。这样做可以对较难的任务进行策略训练,并优化为其收集的数据。因此,每个任务的数据量和每个任务的成功次数会随着时间的推移而增加。为了进一步提高性能,我们把数据收集的重点放在表现不佳的任务上,而非一视同仁地收集各任务的数据。
这个系统收集了七个机器人在 57 个连续数据收集日内的数据,数据量多达 9600 个机器人小时。然而,尽管这种数据收集策略能有效地收集大量任务数据,但任务之间的成功率和数据量是不平衡的。
希望这辈子,最让你无悔的事情就是来达内学习!学习向来不是件易事,但无论过程多么艰难,希望你依然热爱生活,热爱学习!永远记得,达内将与你一同前行!现在扫码,立即领取万元课程礼包,助力0基础快速入行,为你梳理行业必备技能,全方位了解岗位发展前景!
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加3216764521学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。